TWO TOPOLOGICAL PROBLEMS CONCERNING INFINITE-DIMENSIONAL NORMED LINEAR SPACES(1)

BOR-LUH LIN

Introduction. In the present work, we shall study the following two closely related topological problems concerning infinite-dimensional normed linear spaces.

Problem I. Given a closed subset K of an infinite-dimensional normed linear space E, when is $E \sim K$ homeomorphic to E?

Problem II. Given a closed subset K of an infinite-dimensional normed linear space E, when does there exist a periodic homeomorphism of E onto E with K as its set of fixed points?

Using the fact that every nonreflexive Banach space contains a decreasing sequence of nonempty bounded closed convex subsets with empty intersection, Klee [11] proved that if K is a compact subset of a nonreflexive Banach space E, then E is homeomorphic to $E \sim K$. Later [13], he showed that every infinite-dimensional normed linear space contains a decreasing sequence of unbounded but linear bounded (for the definition, see §1) nonempty closed convex subsets with empty intersection. He used this result to prove that every infinite-dimensional normed linear space E is homeomorphic to $E \sim K$ where K is an arbitrary compact subset of E. As a consequence [13], if C is the unit cell of an infinite-dimensional normed linear space E, then there exists a homeomorphism i of C onto a closed half-space J in E such that i(BdC) = BdJ. Klee [11] also proved that if E is either a nonreflexive strictly convexifiable Banach space or an infinite-dimensional l_p -space, then Q is homeomorphic to $Q \cup K$ where K is a compact convex subset of the bounding hyperplane of an open halfspace Q in E.

Concerning the set of fixed points of a periodic homeomorphism of a topological space into itself, a classical result of Smith [19] states that if M is a finite-dimensional locally compact space, acyclic mod p where p is

Presented to the Society, May 6, 1963, under the titles On a theorem of Klee and Some topological properties of infinite-dimensional Banach spaces; received by the editors August 19, 1963.

⁽¹⁾ This work was partially supported by National Science Foundation Grant G24865 and represents the major part of a doctoral thesis submitted to Northwestern University in August, 1963. The author wishes to express his thanks to Professor Ky Fan for his many helpful suggestions.

a prime, then the set of fixed points of every homeomorphism of period p of M into M is acyclic mod p. For infinite-dimensional Hilbert space, the situation is quite different. A result of Klee [14] asserts that if K is a compact subset of an infinite-dimensional Hilbert space E, then for each integer n > 1, there exists a homeomorphism of period n of E onto E with K as its set of fixed points.

We shall continue the study in these directions and strengthen some of the known results. We first prove that in every infinite-dimensional normed linear space there exists a sequence $\{C_n\}$ of unbounded but linearly bounded closed convex bodies with empty intersection and Int. $C_n \supset C_{n+1}$ for each $n = 0, 1, 2, \cdots$. Then we are able to prove (Theorem 1.3) that if K is a bounded closed convex subset of an infinite-dimensional normed linear space E, then there exists a homeomorphism i of $E \times [0,1]$ onto $(E \times (0,1])$ $\bigcup ((E \sim K) \times \{0\})$ such that $i(E \times \{0\}) = (E \sim K) \times \{0\}$ and i(x, 1)= (x, 1) for all x in E. Applying a result of Bartle and Graves [2] and Theorem 1.3, we shall show in Theorem 3.5 that for every closed subset K of a closed linear subspace F of infinite deficiency in a Banach space E, $E \sim K$ is homeomorphic to E. If, in addition, Q is an open half-space in E such that the bounding hyperplane of Q contains F, then Q is homeomorphic to $Q \cup K$. Using these properties of an infinite-dimensional Banach space E, we can show (Theorem 5.3) that for every closed subset K of a closed linear subspace of infinite deficiency in E and for each positive integer n, there exists a homeomorphism of period 2n of E onto E with K as its set of fixed points; in case E is a Hilbert space, then for each integer n > 1, there exists a homeomorphism of period n of E onto E with K as its set of fixed points. Now, for every compact subset K of an infinite-dimensional Hilbert space E, there exists a homeomorphism i of E onto E such that i(K) is contained in a closed linear subspace of infinite deficiency in E [12], hence Klee's result concerning the set of fixed points of a periodic homeomorphism, mentioned in the last paragraph, is a consequence of Theorem 5.3.

The above results concerning Problems I, II deal with those sets K which are "small" in the sense that K is a closed subset of a closed linear subspace of infinite deficiency in a Banach space. Next, we shall consider those sets K which are "large" in the sense that K is a closed convex body of an infinite-dimensional closed linear subspace of a Banach space E. For a closed convex body K in an infinite-dimensional Banach space E, the characteristic cone $\{y \in E | x + [0, \infty)(y - x) \subset K\}$ of K relative to $x \in K$ is either a linear variety of finite deficiency, a linear variety of infinite deficiency, or not a linear variety. We shall show in Theorems 2.5, 2.6 that, if the characteristic cone of a closed convex body K of an infinite-dimensional Banach space E is not a linear variety of finite deficiency in

E, then there exists a homeomorphism i of E onto E such that i(K) is a closed half-space J in E and i(BdK) is the bounding hyperplane of J. Hence, by using Theorem 1.3, we can prove (Theorem 3.1) that if F is an infinite-dimensional closed linear subspace of a Banach space E and K is a closed convex body in F such that the characteristic cone of K is not a linear variety of finite deficiency in E, then E is homeomorphic to $E \sim K$. In case the characteristic cone of K is a linear variety of finite deficiency, E is not necessarily homeomorphic to $E \sim K$. For example, E is not homeomorphic to $E \sim H$, where H is a closed hyperplane in E. On the other hand, if K is a closed convex body on the bounding hyperplane of an open half-space Q of an infinite-dimensional Banach space E, it is unknown whether or not Q and $Q \cup K$ are homeomorphic. In particular, it is unknown whether or not Q is homeomorphic to $Q \cup BdQ$. Since $Q \cup BdQ$ is homeomorphic to the unit cell of E (Theorem 2.4), this is equivalent to the following problem: When is an infinite-dimensional Banach space homeomorphic to its unit cell? This leads to the following question: Let K be a closed convex body of a closed linear subspace of finite deficiency in an infinite-dimensional Banach space E. When is K homeomorphic to E? Klee [11] showed that every infinite-dimensional Hilbert space is homeomorphic to its unit cell and unit sphere. Later [16], he showed that if a Banach space E contains an h-compressible proper closed linear subspace, then E is homeomorphic to its unit cell. In Theorem 4.3, we show that if a Banach space E contains a closed linear subspace B of infinite deficiency such that B is homeomorphic to l_2 , if K is a closed convex body of a closed linear subspace F of finite deficiency in E, then K is homeomorphic to E and $\operatorname{Bd}_F K$ is homeomorphic either to E or $E \times S_n$ for some non-negative integer n, where S_n is the n-sphere. Concerning Problem II, Theorem 5.2 states that if F is an infinite-dimensional closed linear subspace of a Banach space E and K is a closed convex body in F such that the characteristic cone of K is not a linear variety of finite deficiency in F, then, for each positive integer n, there exists a homeomorphism of period 2n of E onto E with $\mathrm{Bd}_F K$ as its set of fixed points; in case E is an infinite-dimensional Hilbert space, then, for each integer n > 1, there exists a homeomorphism of period n of E onto E with K as its set of fixed points.

Notations. All topological vector spaces considered are real vector spaces with the Hausdorff property. The field of real numbers is denoted by R, $[m,n] = \{\alpha \in R | m \le \alpha \le n\}$, $(m,n] = \{\alpha \in R | m < \alpha \le n\}$, and $(m,n) = \{\alpha \in R | m < \alpha < n\}$. For x, y in a vector space E,

$$(x,y] = {\alpha x + (1-\alpha)y | 0 \le \alpha < 1}.$$

The empty set is denoted by \emptyset . $E \sim A = \{x \in E | x \notin A\}$. For a subset K of a subspace F of a topological space E, Int. K will denote the interior of

K in E, \overline{K} will denote the closure of K in E and $\operatorname{Bd}_F K$ will denote the boundary of K relative to F. For two topological spaces E, F, $E \approx F$ will mean that E is homeomorphic to F.

1. Preliminary theorems. A closed convex subset K of an Euclidean space is bounded if and only if its intersection with each line is bounded. This is not true in an infinite-dimensional normed linear space. The following terminology is introduced by Klee [12].

A subset of a linear space is said to be *linearly bounded* if its intersection with each line is a bounded subset.

THEOREM 1.1. In every infinite-dimensional normed linear space E, there exists a sequence $\{C_n\}$ of unbounded but linearly bounded closed convex bodies such that $\bigcap_{n=0}^{\infty} C_n = \emptyset$ and $\operatorname{Int.} C_n \supset C_{n+1}$, $C_n \not\equiv \emptyset$, for each $n=0,1,2,\cdots$.

Proof. Case 1. E is separable.

By a theorem of Klee [13], there exists a sequence of continuous linear functionals $\{f_i\}$, $\bigcap_{i=1}^{\infty}f_i^{-1}(0)=\{0\}$, $\|f_i\|=1$ for each $i=1,2,\cdots$ and a sequence of positive integers $\{n_i\}$ such that the closed convex set $D_0=\bigcap_{i=1}^{\infty}f_i^{-1}([-n_i,n_i])$ is an unbounded but linearly bounded subset of E. By the uniform boundedness principle [6], E admits a continuous linear functional f, $\|f\|=1$, such that $\sup_{D_0}f=\infty$. Let $D_n=D_0\cap f^{-1}[n,\infty)$ for $n=1,2,\cdots$. Then $\{D_n\}$ is a decreasing sequence of unbounded but linearly bounded closed convex sets with empty intersection.

For a given $\epsilon > 0$ and a subset A of E, let $N_{\epsilon}A = \{x \in E \mid ||x - a|| < \epsilon \}$ for some a in A. It is clear that if A is a convex subset of E, then $N_{\epsilon}A$ is also a convex subset.

We claim that for any ϵ , $0 < \epsilon < \infty$, $N_{\epsilon}D_n$ is a linearly bounded subset of E for each $n = 0, 1, 2, \cdots$.

For an arbitrary x in E, there is an integer i such that $f_i(x) = \delta \neq 0$. Choose m so that $m|\delta| > n_i + \epsilon$. Then for any α , $|\alpha| \geq m$, and any $y \in f_i^{-1}([-n_i, n_i])$ we have $\epsilon < m|\delta| - n_i \leq |\alpha| |\delta| - n_i \leq |\alpha\delta| - |f_i(y)| \leq |f_i(\alpha x - y)| \leq ||f_i|| \cdot ||\alpha x - y|| = ||\alpha x - y||$. Since $D_n \subset f_i^{-1}([-n_i, n_i])$, this implies that αx is not in $N_\epsilon D_n$ for all α , $|\alpha| \geq m$. Since $N_\epsilon D_n$ is convex, it follows easily that $N_\epsilon D_n$ is a linearly bounded subset for each $n = 0, 1, 2, \cdots$.

Let $C_n = \overline{N_{1/2^n}D_n}$, $n = 0, 1, 2, \cdots$. It is easy to prove that $C_n \subset N_{1/2^{n-1}}D_n$. We have shown that $N_{\epsilon}D_n$ is linearly bounded for each $n = 0, 1, 2, \cdots$ and each $\epsilon > 0$. Hence $\{C_n\}$ is a sequence of unbounded but linearly bounded closed convex bodies, $\operatorname{Int.} C_n \supset C_{n+1}$ for each $n = 0, 1, 2, \cdots$. It remains to show that $\bigcap_{n=0}^{\infty} C_n = \emptyset$.

Suppose $x \in \bigcap_{n=0}^{\infty} C_n$. For each integer $m \ge 0$, there exist $y_{mn} \in N_{1/2^n}D_n$ such that $\|x - y_{mn}\| < 1/2^m$ for each $n = 0, 1, 2, \dots$ $y_{mn} \in N_{1/2^n}D_n$ implies that there exists $z_{mn} \in D_n$ such that $\|y_{mn} - z_{mn}\| < 1/2^n$. Hence $\|x - z_{nn}\|$

 $\leq ||x - y_{nn}|| + ||y_{nn} - z_{nn}|| < 1/2^n + 1/2^n = 1/2^{n-1} \to 0$ as $n \to \infty$. Since $\{D_n\}$ is a decreasing sequence of closed subsets and $z_{nn} \in D_n$ for each $n = 0, 1, 2, \dots$, this implies that $x \in D_n$ for each $n = 0, 1, 2, \dots$, contradiction.

Case 2. E is not separable.

Let F be a separable closed linear subspace of E. By Case 1, there exists a sequence of unbounded but linearly bounded closed convex subsets $\{D_n\}$ of F with empty intersection. For each $x \in E \sim F$, by the Hahn-Banach theorem, there is a continuous linear functional g on E such that g(F) = 0, $g(x) = \delta \neq 0$. By an argument similiar to the argument of Case 1, it can be shown that for each ϵ , $0 \le \epsilon < \infty$, $N_{\epsilon}D_n = \{x \in E \mid \|x - a\| < \epsilon$ for some a in $D_n\}$ is a linearly bounded subset of E, for each $n = 0, 1, 2, \cdots$. Let $C_n = \overline{N_{1/2}nD_n}$, then $\{C_n\}$ is a sequence of unbounded but linearly bounded closed convex bodies in E with empty intersection and E and E in E are E and E are E are E and E are E are E and E are E are E are E and E are E are E and E are E are E are E and E are E are E are E are E and E are E are E and E are E are E are E are E and E are E and E are E and E are E and E are E are E are E and E are E are E are E are E and E are E are E are E are E and E are E are E and E are E are E are E and E are E are E and E are E are E and E are E are E are E and E are E are E and E are E are E and E are E and E are E are E are E are E and E are E and E are E are E and E are E are E and E are E and E are E are E are E are E are E are E and E are E are E and E are E and E are E are E are E are E and E are E are E and E are E are E and E are E and E are E are E and E are E are E and E are E

The following concept introduced by Steinitz and also studied by Stoker [20] is useful in classifying the closed convex subsets in a topological vector space (see §2): Let A be a closed convex subset of a topological vector space E and $x \in A$. The characteristic cone of A relative to x is the set $cc(A; x) = \{y \in E | x + [0, \infty)(y - x) \subset A\}$. It is clear that if $x, y \in A$, then cc(A; x) = cc(A; y) + (x - y). Thus if no confusion is possible, we shall simply speak of the characteristic cone of A.

We need the following lemma of Corson and Klee [4] in proving Theorem 1.3.

LEMMA 1.2. Suppose E_i , i=1,2, are topological vector spaces, A_i , B_i are closed convex bodies in E_i and $y_i \in E_i$ such that $y_i \in \operatorname{Int}. A_i \subset A_i \subset \operatorname{Int}. B_i$ and $\operatorname{cc}(A_i; y_i) = \operatorname{cc}(B_i; y_i)$. Then every homeomorphism h of $\operatorname{Bd} B_1$ onto $\operatorname{Bd} B_2$ can be extended to a homeomorphism k of $B_1 \sim \operatorname{Int}. A_1$ onto $B_2 \sim \operatorname{Int}. A_2$ such that $k(x) \in (y_2, h(z)]$ whenever $z \in \operatorname{Bd} B_1$ and $x \in (y_1, z] \sim \operatorname{Int}. A_1$.

Theorem 1.3. For every bounded closed convex subset K of an infinite-dimensional normed linear space E, there exists a homeomorphism i of $E \times [0,1]$ onto $(E \times (0,1]) \cup ((E \sim K) \times \{0\})$ such that i(x,1) = (x,1) for all x in E and $i(E \times \{0\}) = (E \sim K) \times \{0\}$.

Proof. By Theorem 1.1, there exists a sequence $\{C_n\}$ of unbounded but linearly bounded closed convex bodies such that $\mathrm{Int.}C_n \supset C_{n+1}$ for each $n=0,1,2,\cdots$ and $\bigcap_{n=0}^{\infty}C_n=\emptyset$. By considering $\{\alpha C_n\}$, for some $\alpha \in R$, instead of $\{C_n\}$, if necessary, we may assume that $K \subset \mathrm{Int.}C_0$.

Let $F = E \times R$ be the product space of E and R. Define

$$A_n = C_n \times \left[-\frac{1}{n+1}, \frac{1}{n+1} \right], \quad n = 0, 1, 2, \cdots.$$

Choose $y_n \in \text{Int.} C_n$, $n = 0, 1, 2, \cdots$. Then the sequence $\{A_n\}$ has the following properties:

 A_n is a closed convex body in F, $(y_n, 0) \in \text{Int.} A_n$ and $\text{Int.} A_n \supset A_{n+1}$ for all $n=0,1,2,\cdots$. $\operatorname{cc}(A_i,(y_n,0))=(y_n,0)$ for each $0 \le i \le n$. $\bigcap_{n=0}^{\infty} A_n = \emptyset$. Now, let $B_0=A_0$. Let ϵ be a positive number such that B_0 contains the 2ϵ -neighborhood $N_2(K \times \{0\})$ of $K \times \{0\}$. For $n \ge 1$, let $B_n = \overline{N_{\epsilon/n}(K \times \{0\})}$. Let $z_n = (0,0)$ for all $n=0,1,2,\cdots$. Then the sequence $\{B_n\}$ has the following properties:

 B_n is a closed convex body in F, $z_n \in \text{Int.} B_n$, $\text{Int.} B_n \supset B_{n+1}$ for all $n = 0, 1, 2, \cdots$. $\text{cc}(B_i, z_n) = z_n$ for all $0 \le i \le n$ and $\bigcap_{n=0}^{\infty} B_n = K \times \{0\}$.

Let i_0 be the identity mapping of $F \sim \operatorname{Int}.A_0$. Then $i_0(\operatorname{Bd} A_0) = \operatorname{Bd} B_0$. By Lemma 1.2, $i_0|\operatorname{Bd} A_0$ can be extended to a homeomorphism i_1 of $A_0 \sim \operatorname{Int}.A_1$ onto $B_0 \sim \operatorname{Int}.B_1$ which takes points of $E \times \{0\}$ into $E \times \{0\}$. Continuing in this way, we obtain a sequence of homeomorphisms i_0, i_1, i_2, \cdots such that $i_n(A_{n-1} \sim \operatorname{Int}.A_n) = B_{n-1} \sim \operatorname{Int}.B_n$ for each n=1, $2, 3, \cdots$. Let $i = \bigcup_{n=0}^{\infty} i_n$. Since $\bigcap_{n=0}^{\infty} A_n = \emptyset$, $\bigcap_{n=0}^{\infty} B_n = K \times \{0\}$, it follows that i is a homeomorphism of F onto $F \sim (K \times \{0\})$. The restriction of i on $E \times [0,1]$ is a homeomorphism of $E \times [0,1]$ onto $(E \times (0,1]) \cup ((E \sim K) \times \{0\})$ such that i(x,1) = (x,1) for all x in E and $i(E \times \{0\}) = (E \sim K) \times \{0\}$. Q.E.D.

- 2. Classification of closed convex bodies. We begin with a result of Bartle and Graves [2], extended to the present form (Lemma 2.1) by Michael [18]. A consequence (Corollary 2.3) of the result is needed in the proofs of Theorem 2.5 and most of the results in §§3, 4, 5.
- LEMMA 2.1 (BARTLE-GRAVES). Let f be a continuous linear mapping of a Banach space E onto a Banach space F. Then there exist a positive constant m and a continuous mapping g of F into E such that $f \circ g(x) = x$, $g(\alpha x) = \alpha g(x)$, $||g(x)|| \le m||x||$ for all x in F and α in R.

Let $G = f^{-1}(0)$. For each $(x, y) \in F \times G$, define

$$|||(x, y)|| = \max(||x||, ||y||).$$

It can be proved that $F \times G$ is a Banach space with the norm ||| |||.

Theorem 2.2. Let f be a continuous linear mapping of a Banach space E onto a Banach space F. Then there exists a homeomorphism h of E onto $F \times G$, $G = f^{-1}(0)$, such that h(y) = (0, y) for all y in G and |||h(y)||| = ||y|| for all $y \in E$.

Proof. By the previous lemma, there is a continuous mapping g of F into E such that $f \circ g(x) = x$, $g(\alpha x) = \alpha g(x)$, $\|g(x)\| \le m\|x\|$ for all x in F and all α in R. Define $h_1: E \to F \times G$ by $h_1(y) = (f(y), y - g \circ f(y))$ for all y in E. It can be proved that h_1 is a homeomorphism of E onto $F \times G$

such that $h_1(y) = (0, y)$ for all y in E. Define $h: E \to F \times G$ by $h(y) = \|y\| h_1(y) / \|h_1(y)\|$ if $h_1(y) \neq 0$, that is, $y \neq 0$, and h(0) = (0, 0). Then $\|y\| / (1+m) \leq \|h_1(y)\| \leq ((m+1)\|f\|+1)\|y\|$ for all y in E and h is a homeomorphism of E onto $F \times G$ such that h(y) = (0, y) for all y in F and $\|h(y)\| = \|y\|$ for all y in E. Q.E.D.

COROLLARY 2.3. For any closed linear subspace F of a Banach space E, there exists a homeomorphism h of E onto $(E/F) \times F$ such that h(y) = (0, y) for all y in F.

Proof. Let f be the canonical mapping of E onto the Banach space E/F. The corollary follows immediately from Theorem 2.2. Q.E.D.

Clearly, the characteristic cone of a closed convex body in an infinitedimensional normed linear space is either a linear variety of infinite deficiency or a linear variety of finite deficiency or is not a linear variety. We shall consider each case separately.

THEOREM 2.4. Let E be an infinite-dimensional normed linear space, $C = \{x \in E \mid ||x|| \le 1\}$ and $S = \{x \in E \mid ||x|| = 1\}$. Let J be a closed half-space in E with bounding hyperplane H. Then there exists a homeomorphism i of E onto E such that i(C) = J and i(S) = H.

Proof. By Theorem 1.3, E is homeomorphic to $E \sim \{0\}$. Using this property of E, Klee [13] proved that there exists a homeomorphism j of C onto J which maps S onto H. Without loss of generality, we may assume $0 \in J \sim H$. Define i of E onto E by i(x) = j(x) if $x \in C$, i(x) = ||x|| j(x/||x||) if $x \notin C$. It is clear that i is a homeomorphism and i(C) = J, i(S) = H. Q.E.D.

Theorem 2.5. Let K be a closed convex body in a Banach space E. If the characteristic cone of K is a closed linear variety L of infinite deficiency in E, then there exists a homeomorphism i of E onto E such that i(K) is a closed half-space J in E and i(Bd K) is the bounding hyperplane of J.

Proof. We may assume that $0 \in Int.K$, $0 \in L$.

Case 1. Suppose $L = \{0\}$, that is, K is a linearly bounded closed convex body in E.

For any point $y \neq 0$ in E, there exists a unique point x in Bd K such that $y = \alpha x$ for some scalar $\alpha > 0$. Define $j: E \rightarrow E$ by

$$j(y) = \alpha \frac{x}{\|x\|}$$
 for all $y \neq 0$ in E ; $y = \alpha x$, $x \in \operatorname{Bd} K$,

and

$$i(0) = 0$$
.

Then j is a homeomorphism of E onto E such that j(K) = C and $j(\operatorname{Bd} K) = S$. Let i_1 be a homeomorphism of E onto E such that $i_1(C)$ is a closed half-space J and $i_1(S)$ is the bounding hyperplane H of J obtained in Theorem 2.4. Then $i = i_1 \circ j$ is a homeomorphism of E onto E, i(K) = J, $i(\operatorname{Bd} K) = H$.

Case 2. Suppose dim $L \ge 1$.

We claim that $K = \bigcup_{x \in K} (x + L)$.

It is clear that $K \subset \bigcup_{x \in K} (x + L)$. Given any $x \in K$, $y \in L$, since $y/\lambda \in L$ for all real numbers $\lambda > 0$ and K is convex, $(1 - \lambda)x + \lambda(y/\lambda) = (1 - \lambda)x + y$ is in K for all $0 < \lambda \le 1$. Let $\lambda \to 0$; then we have $x + y \in K$ because K is closed.

By Corollary 2.3, the mapping h of E onto $(E/L) \times L$, defined by $h(x) = (f(x), x - g \circ f(x))$ for all x in E where f is the canonical mapping of E onto E/L, is a homeomorphism. Since $K = \bigcup_{x \in K} (x + L)$ and the characteristic cone of K is L, f(K) is a linearly bounded closed convex body in E/L and $h(K) = f(K) \times L$. Let J be a closed half-space in E; we may assume that the bounding hyperplane H of J contains L. By Case 1, there exists a homeomorphism i of E/L onto E/L such that i(f(K)) = J/L, i(Bdf(K)) = H/L. The mapping $i \times 1$, $(i \times 1)(x,y) = (i(x),y)$ for all (x,y) in $(E/L) \times L$, is a homeomorphism of $(E/L) \times L$ onto $(E/L) \times L$ which maps $f(K) \times L$ onto $(J/L) \times L$, $(Bdf(K)) \times L = Bdh(K)$ onto $(H/L) \times L$. Hence $j = h^{-1} \circ (i \times 1) \circ h$ is a homeomorphism of E onto E, f(K) = J, f(E) = J, f(E) = J. Q.E.D.

REMARK. Using the argument similar to the proof of Theorem 1.3, Corson and Klee [4] proved that if F is a closed linear subspace of infinite deficiency in a normed linear space E, then E is homeomorphic to $E \sim F$. They were then able to prove Theorem 2.5 in case E is an infinite-dimensional normed linear space. However, the proof of Theorem 2.5 is simpler.

THEOREM 2.6. Let K be a closed convex body in a normed linear space E. If the characteristic cone of K is not a linear variety then there is a homeomorphism i of E onto E such that i(K) is a closed half-space J in E and i(BdK) is the bounding hyperplane of J.

Proof. We may assume $0 \in K$, $0 \in J \sim H$. There is a homeomorphism j of K onto J such that $j(\operatorname{Bd} K) = H$, j(K) = J [11, p. 30]. For each element y in $E \sim K$, there exists a unique point x in $\operatorname{Bd} K$ such that $y = \alpha x$ for some scalar $\alpha > 0$. Define i of E onto E by i(y) = j(y) if y is in K, $i(y) = \alpha j(x)$ if $y \in E \sim K$, $y = \alpha x$, $x \in \operatorname{Bd} K$. It can be proved that i is a homeomorphism of E onto E, i(K) = J, $i(\operatorname{Bd} K) = H$. Q.E.D.

The above two results are to be compared with the following result of Klee [11].

- Theorem 2.7. If the characteristic cone of a closed convex body K of a normed linear space E is a linear variety L of finite deficiency n in E, then there is a homeomorphism i of K onto $L \times C_n$ where C_n is the unit cell in n-dimensional Euclidean space and $i(\operatorname{Bd} K) = L \times S_{n-1}$ where S_{n-1} is the (n-1)-sphere.
- 3. Closed subsets K of an infinite-dimensional normed linear space E such that E and $E \sim K$ are homeomorphic. First, we consider the case when K is a closed convex body of an infinite-dimensional closed linear variety of a Banach space E. Then we shall consider the case when K is a closed subset of a closed linear variety of infinite deficiency in a Banach space E.

THEOREM 3.1. Let F be an infinite-dimensional closed linear variety of a Banach space E. If the characteristic cone of a closed convex body K of F is not a linear variety of finite deficiency in F, then E and $E \sim K$ are homeomorphic.

Proof. We may assume that F is a closed linear subspace. Corollary 2.3 asserts that there is a homeomorphism h of E onto $(E/F) \times F$ such that h(x) = (0, x) for all x in F and ||h(x)|| = ||x|| for all x in E. By Theorems 2.5, 2.6, there exists a homeomorphism k of F onto F such that $k(K) = C_F$, the unit cell of F. The mapping $i = h^{-1} \circ (1 \times k) \circ h$, $(1 \times k) (x, y) = (x, k(y))$ for all (x, y) in $(E/F) \times F$, is a homeomorphism of E onto E such that i(K) is a closed convex subset of the unit cell of E. By Theorem 1.3, there exists a homeomorphism j of E onto $E \sim i(K)$. The mapping $i^{-1} \circ j \circ i$ is a homeomorphism of E onto $E \sim K$. Q.E.D.

REMARK. If the characteristic cone of K is a linear variety of finite deficiency, then E is not necessarily homeomorphic to $E \sim K$. For example, E is not homeomorphic to $E \sim H$ when H is a closed hyperplane in E.

LEMMA 3.2. For every infinite-dimensional normed linear space E, there exists a homeomorphism j of $((E \sim \{0\}) \times (0,1]) \cup (E \times \{0\})$ onto $E \times [0,1]$ such that j(x,0) = (x,0) for all x in E.

Proof. By Theorem 1.3, there exists a homeomorphism i of $E \times [0,1]$ onto $(E \times (0,1]) \cup ((E \sim \{0\}) \times \{0\})$ such that $i(E \times \{0\}) = (E \sim \{0\}) \times \{0\}$. By identifying $(E \sim \{0\}) \times \{0\}$ with $E \sim \{0\}$, there is a homeomorphism i_0 of E onto $E \sim \{0\}$ defined by $i_0(x) = i(x,0)$ for all x in E. Define

$$j: ((E \sim \{0\}) \times [0,1]) \cup (\{0\} \times \{0\}) \rightarrow E \times [0,1]$$

by

$$j(x,t) = \begin{cases} i(i_0^{-1}(x), t) & \text{if } t \neq 0, \\ (x,t) & \text{if } t = 0. \end{cases}$$

It can be proved that j is a homeomorphism of $((E \sim \{0\}) \times [0,1]) \cup (\{0\} \times \{0\})$ onto $E \times [0,1]$ such that j(x,0) = (x,0) for all x in E. Q.E.D.

LEMMA 3.3. For any infinite-dimensional normed linear space E, there exists a homeomorphism i of $(E \times (0,1]) \cup (0,0)$ onto $E \times (0,1]$ such that i(x,1) = (x,1) for all x in E.

Proof. By Lemma 3.2, there exists a homeomorphism j of $E \times [0,1]$ onto $((E \sim \{0\}) \times (0,1]) \cup (E \times \{0\}) = ((E \sim \{0\}) \times [0,1]) \cup (0,0)$ such that j(x,0) = (x,0) for all x in E. Define i_1 of $E \times [0,1]$ onto

$$((E \sim \{0\}) \times [0,1]) \cup (\{0\} \times \{0,1\})$$

by $i_1(x,t) = j(x,2t)$ if $0 \le t \le 1/2$; $i_1(x,t) = j(x,2-2t)$ if $1/2 \le t \le 1$. It is easy to prove that i_1 is a homeomorphism and $i_1(x,1) = (x,1)$; $i_1(x,0) = (x,0)$ for all x in E.

Since E is a metric space and $\{0\}$ is conveniently situated in E [11, (2.4)], there exists a homeomorphism i_2 of $((E \sim \{0\}) \times (0,1]) \cup (\{0\} \times \{0,1\})$ onto $((E \sim \{0\}) \times (0,1]) \cup (\{0\} \times \{1/2,1\})$ such that $i_2(x,1) = (x,1)$ for all x in E. Define i_3 of $((E \sim \{0\}) \times (0,1]) \cup (\{0\} \times \{1/2,1\})$ onto $E \times (0,1]$ by $i_3(x,t) = i_1^{-1}(x,2t)$ if $0 < t \le 1/2$; $i_3(x,t) = i_1^{-1}(x,2t-1)$ if $1/2 \le t \le 1$. It can be proved that i_3 is a homeomorphism such that $i_3(x,1) = (x,1)$ for all x in E. Hence the mapping $i = i_3 \circ i_2 \circ i_1$ is a homeomorphism of $(E \times (0,1]) \cup (0,0)$ onto $E \times (0,1]$ such that i(x,1) = (x,1) for all x in E. Q.E.D.

LEMMA 3.4. If F is a closed linear subspace of infinite deficiency in a Banach space E, then E and $E \sim F$ are homeomorphic. If, in addition, Q is an open half-space in E whose bounding hyperplane H contains F then there exists a homeomorphism f of Q onto $Q \cup F$ such that $f(x_0 + y) = y$ for all y in F where x_0 is in Q.

Proof. By Corollary 2.3, there is a homeomorphism h of E onto $(E/F) \times F$ such that h(x) = (0, x) for all x in F. Since E/F is an infinite-dimensional Banach space, by Theorem 1.3, there exists a homeomorphism g of E/F onto $(E/F) \sim \{0\}$. Define

$$k: (E/F) \times F \rightarrow ((E/F) \times F) \sim (\{0\} \times F)$$

by

$$k(x,y) = (g(x),y)$$
 for all (x,y) in $(E/F) \times F$.

It is clear that k is a homeomorphism of $(E/F) \times F$ onto $((E/F) \times F) \sim (\{0\} \times F)$. The mapping $h^{-1} \circ k \circ h$ is a homeomorphism of E onto $E \sim F$. By hypothesis, F is contained in the bounding hyperplane H of an open

half-space Q, hence H is homeomorphic to $(H/F) \times F$. Hence

$$E \approx H \times (-\infty, \infty) \approx (H/F) \times F \times (-\infty, \infty) \approx (H/F) \times (-\infty, \infty) \times F,$$

$$Q \approx H \times (0, \infty) \approx (H/F) \times F \times (0, \infty) \approx (H/F) \times (0, \infty) \times F,$$

$$Q \cup F \approx ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times F).$$

To prove Q and $Q \cup F$ are homeomorphic, it suffices to show $(H/F) \times (-\infty, \infty) \times F$ is homeomorphic to

$$((H/F)\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times F).$$

By Lemma 3.3, there is a homeomorphism f_0 of $(H/F) \times (0, \infty)$ onto $((H/F) \times (0, \infty)) \cup (0,0)$. Define

$$f: (H/F) \times (0, \infty) \times F \rightarrow ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times F)$$
 by

$$f(x,t,y) = (f_0(x,t),y)$$
 for all (x,t,y) in $(H/F) \times (0,\infty) \times F$.

It is easy to prove that f is a homeomorphism of $(H/F) \times (0, \infty) \times F$ onto $((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times F)$. Q.E.D.

Theorem 3.5. Let F be a closed linear subspace of infinite deficiency in a Banach space E. Let Q be an open half-space in E whose bounding hyperplane H contains F. If K is a closed subset in F, then Q is homeomorphic to $Q \cup K$ and E is homeomorphic to $E \sim K$.

Proof. By the previous lemma, to prove that Q and $Q \cup K$ are homeomorphic it suffices to show that $Q \cup F$ and $Q \cup K$ are homeomorphic.

For x in F, let $\phi(x) = \inf\{\|x - a\| | a \in K\}$. Clearly, ϕ is a real-valued continuous function on F. Define

$$g: ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times F)$$
$$\rightarrow ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$$

by

$$g(x,t,y) = \begin{cases} (x,t,y) & \text{if } y \in K, \\ \left(\phi(y) f_0^{-1} \left(\frac{x}{\phi(y)}, \frac{t}{\phi(y)}\right), y\right) & \text{if } y \in F \sim K, \end{cases}$$

where f_0 is a homeomorphism of $(H/F) \times (0, \infty)$ onto $((H/F) \times (0, \infty)) \cup (0, 0)$ such that $f_0(x, t) = (x, t)$ for $t \ge 1$ obtained by Lemma 3.3.

To show g is continuous, it suffices to show if $y_n \in K$, $y_n \to y \in K$, then $g(x, t, y_n) \to g(x, t, y)$. Since $f_0(x, t) = (x, t)$ for $t \ge 1$, for n sufficiently large,

$$g(x,t,y_n) = \left(\phi(y_n) f_0^{-1}\left(\frac{x}{\phi(y_n)},\frac{t}{\phi(y_n)}\right), y_n\right) = \left(\phi(y_n)\left(\frac{x}{\phi(y_n)},\frac{t}{\phi(y_n)}\right), y_n\right) = (x,t,y_n).$$

This implies that $g(x, t, y_n) \rightarrow g(x, t, y)$ as $y_n \rightarrow y$. Clearly, g is a one-to-one and onto mapping. Define

$$g_1: ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$$
$$\rightarrow ((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times F)$$

by

$$g_1(x,t,y) = \begin{cases} (x,t,y) & \text{if } y \in K, \\ \left(\phi(y) f_0\left(\frac{x}{\phi(y)}, \frac{t}{\phi(y)}\right), y\right) & \text{if } y \in F \sim K. \end{cases}$$

Then if $\phi(y) > 0$, we have $g \circ g_1(x,t,y) = g(\phi(y)) f_0(x/\phi(y),t/\phi(y)),y) = (\phi(y)) f_0^{-1}(\phi(y)) f_0^{-1}(x/\phi(y),t/\phi(y)),y) = (\phi(y)) f_0^{-1} \circ f_0(x/\phi(y),t/\phi(y)),y) = (x,t,y)$. This implies that g_1 is the inverse of g. By similar argument as g, it can be proved that g_1 is continuous. Hence g is a homeomorphism. We have shown that $Q \cup F$ is homeomorphic to $Q \cup K$.

By Lemma 3.4, the mapping f of $(H/F) \times (0, \infty) \times F$ onto

$$((H/F)\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times F)$$

defined by $f(x,t,y) = (f_0(x,t),y)$ for (x,t,y) in $(H/F) \times (0,\infty) \times F$ is a homeomorphism. Hence $g \circ f$ is a homeomorphism of $(H/F) \times (0,\infty) \times F$ onto $((H/F) \times (0,\infty) \times F) \cup (\{0\} \times \{0\} \times K)$ and $g \circ f(x_0,t_0,y) = (0,0,y)$ for all y in K where $f_0(x_0,t_0) = (0,0)$. The restriction of $(g \circ f)^{-1}$ on $(H/F) \times (0,\infty) \times F$ is a homeomorphism of $(H/F) \times (0,\infty) \times F$ onto

$$((H/F)\times(0,\,\infty)\times F)\cup(\{x_0\}\times\{t_0\}\times K).$$

This can be used to define a homeomorphism of E onto $E \sim K$. Q.E.D. REMARK. The restriction of g on

$$((H/F)\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times(F\sim K))$$

is a homeomorphism onto $(H/F) \times (0, \infty) \times F$. Since K is a closed subset of F, $F \sim K$ is an open subset in F. This implies that supposing F is a closed linear subspace of infinite deficiency in a Banach space E and Q is an open half-space in E such that the bounding hyperplane of Q contains F, then for any open subset G in F, Q is homeomorphic to $Q \cup G$.

REMARK. In case E is an infinite-dimensional Hilbert space, Theorem 3.5 had been proved by Klee [14] implicitly.

Corollary 2.3 is not available in the proof of Theorems 3.1, 3.5 when E is not complete [15]. But if there exists a projection of E onto F, then $E = G \times F$ for some closed linear subspace G in E. Using the property that $E = G \times F$ in place of Corollary 2.3 we can prove the following results.

- THEOREM 3.6. Let F be a closed linear subspace of finite deficiency in an infinite-dimensional normed linear space E. Let K be a closed convex body in F.
- (a) If the characteristic cone of K is not a linear variety, then E is homeomorphic to $E \sim K$.
- (b) If the characteristic cone of K is a linear variety L of infinite deficiency in F and if there exists a continuous projection of F onto L, then E is homeomorphic to $E \sim K$.
- THEOREM 3.7. Let F be a closed linear subspace of infinite deficiency in a normed linear space E such that there exists a continuous projection of E onto F. If K is a closed subset of F then E and $E \sim K$ are homeomorphic. If, in addition, Q is an open half-space in E such that the bounding hyperplane of Q contains F, then Q and $Q \cup K$ are homeomorphic.
- 4. Topological equivalence of a Banach space with its closed convex subsets. The problem whether an open half-space Q of an infinite-dimensional Banach space E is homeomorphic to $Q \cup \operatorname{Bd} Q$ is equivalent to whether E is homeomorphic to its unit cell (Theorem 2.4). In this section, we shall consider the problem that if K is a closed convex body of a closed linear subspace of finite deficiency in a Banach space E, when is K homeomorphic to E? We shall first prove two lemmas.
- LEMMA 4.1. Let B be a Banach space containing a proper closed linear subspace F which is homeomorphic to an infinite-dimensional Hilbert space. If a Banach space E admits a continuous linear mapping f onto B, then E, $C = \{x \in E | \|x\| \le 1\}$ and $S = \{x \in E | \|x\| = 1\}$ are homeomorphic.
- **Proof.** By Theorem 2.2, there exists a homeomorphism h of E onto $P=B\times G$, $G=f^{-1}(0)$, such that $||\!| h(x)|\!| = |\!| x|\!|$ for all x in E. To prove the theorem, it suffices to show that P, $C_P=\{x\in P||\!| \|x\|\!| \le 1\}$ and $S_P=\{x\in P||\!| \|x\|\!| = 1\}$ are homeomorphic. Let $Y=F\times\{0\}$. Y is a proper closed linear subspace of P and Y is homeomorphic to an infinite-dimensional Hilbert space X. A theorem of Klee [11] assures that X, $X\times(0,\infty)$ and $X\times[0,\infty)$ are homeomorphic. Hence Y, $Y\times(0,\infty)$ and $Y\times[0,\infty)$ are homeomorphic. Since Y is a proper closed linear subspace of P, there is a closed hyperplane P in P containing P. Using Corollary 2.3 and the properties of P, we have

$$P \approx H \times (0, \infty) \approx (H/Y) \times Y \times (0, \infty) \approx (H/Y) \times Y \times [0, \infty)$$

 $\approx H \times [0, \infty) \approx C_P,$
 $P \approx H \times (0, \infty) \approx (H/Y) \times Y \times (0, \infty)$
 $\approx (H/Y) \times Y \approx H \approx S_P.$ Q.E.D.

REMARK 1. This lemma is a consequence of a result of Klee [16]. But the proof is simpler.

Remark 2. Klee [13] showed that for every infinite-dimensional normed linear space E, the unit cell C of E is homeomorphic to $E \sim \operatorname{Int.} C$. Hence the problem whether an infinite-dimensional normed linear space E is homeomorphic to its unit cell C is equivalent to the problem whether E is homeomorphic to $E \sim \operatorname{Int.} C$. Notice that in Theorem 1.3, we have shown that every infinite-dimensional normed linear space E is homeomorphic to $E \sim C$.

REMARK 3. We have shown that the unit sphere S of an infinite-dimensional Banach space E is homeomorphic to a closed hyperplane of E. Hence the problem whether every infinite-dimensional Banach space is homeomorphic to its unit sphere is equivalent to the problem whether every infinite-dimensional Banach space is homeomorphic to a closed hyperplane.

Let F be a separable infinite-dimensional closed linear subspace of a Banach space E. Let H be a closed hyperplane in E containing E. Let H_F be a closed hyperplane in E. By Corollary 2.3, $E = (H/H_F) \times H_F = (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx H/H_F \times F$. Hence if $E = (E/H_F) \times H_F \approx (H/H_F) \times (-\infty, \infty) \times H_F \approx (H/H_F) \times H_F \approx (H/H_F)$

Lemma 4.2. Let E be a Banach space containing a closed linear subspace F of infinite deficiency which is homeomorphic to an infinite-dimensional Hilbert space. If L is a closed linear subspace of finite deficiency m in E, then for each integer $n \ge 0$, E and $L \times [0,1]^n$ are homeomorphic.

Proof. Since F is a closed linear subspace of infinite deficiency in E, there exists a closed linear subspace M of deficiency m in E such that F is contained in M. It is easy to define a linear homeomorphism of E onto E which maps E onto E onto E which maps E onto E onto E is homeomorphic to an infinite-dimensional Hilbert space, E is homeomorphic to E onto E onto E onto E onto E is homeomorphic to E onto E on

$$E \approx L \times R^m \approx (L/F) \times F \times R^m \approx (L/F) \times F \approx L$$
.

For n > 0, to show that E and $L \times [0,1]^n$ are homeomorphic, it suffices to show that E and $H \times [0,1]$ are homeomorphic where H is a closed hyperplane in E. We may assume that H contains F. By Lemma 4.1, H and C_H , the unit cell of H, are homeomorphic. Since the unit cell C of E is homeomorphic to $C_H \times [0,1]$, we have

$$E \approx C \approx C_H \times [0,1] \approx H \times [0,1].$$
 Q.E.D.

THEOREM 4.3. Let E be a Banach space containing a closed linear subspace B of infinite deficiency such that B is homeomorphic to an infinite-dimensional Hilbert space. Let F be a closed linear variety of finite deficiency in E, and K a closed convex body in F.

- (a) If the characteristic cone of K is not a linear variety of finite deficiency in F, then E, K and Bd_FK are homeomorphic.
- (b) If the characteristic cone of K is a linear variety of finite deficiency n in F, then K is homeomorphic to E and $\mathrm{Bd}_F K$ is homeomorphic to $E \times S_{n-1}$, where S_{n-1} is the (n-1)-sphere.
- **Proof.** Without loss of generality, we may assume that F contains B. (a) From Theorems 2.5, 2.6, K is homeomorphic to $C_F = \{x \in F | \|x\| \le 1\}$ and $\mathrm{Bd}_F K$ is homeomorphic to $S_F = \{x \in F | \|x\| = 1\}$. Lemma 4.1 implies that C_F , S_F and F are homeomorphic. Hence K, $\mathrm{Bd}_F K$ and F are homeomorphic. But F is homeomorphic to E by Lemma 4.2. This shows that K and $\mathrm{Bd}_F K$ are homeomorphic to E.
- (b) By Theorem 2.7, K is homeomorphic to $L \times C_n$ and $\mathrm{Bd}_F K$ is homeomorphic to $L \times S_{n-1}$. Lemma 4.2 assures that F, L and $L \times [0,1]^n$ are homeomorphic. Hence K is homeomorphic to F and $\mathrm{Bd}_F K$ is homeomorphic to $F \times S_{n-1}$. But F is homeomorphic to E. The proof of the theorem is completed. Q.E.D.

REMARK. Lemma 4.1 and Theorem 4.3 should be compared with the following result of Corson and Klee [4]: Suppose the normed linear space E admits (for each finite n) a closed linear subspace of deficiency n which is homeomorphic with its own unit cell. Then E is homeomorphic with all its closed convex bodies.

Remark 2. Every infinite-dimensional Banach space clearly contains a separable infinite-dimensional proper closed linear subspace. If Banach's conjecture that all separable infinite-dimensional Banach spaces are homeomorphic is true, then every infinite-dimensional Banach space would contain a proper closed linear subspace homeomorphic to l_2 . Hence if Banach's conjecture is true, Theorem 4.3 would imply that if K is a closed convex body in a closed linear subspace of finite deficiency in an infinite-dimensional Banach space E, then K is homeomorphic to E and $\mathrm{Bd}_F K$ is homeomorphic to E or $E \times S_n$ for some integer $n \ge 0$.

REMARK 3. If E is an infinite-dimensional Hilbert space, then every infinite-dimensional closed linear subspace F of E is isomorphic to E. Let K be a closed convex body in F. By Theorem 4.3, K is homeomorphic to F, hence to E. Klee [12] had proved that every locally compact closed convex subset of an infinite-dimensional normed linear space is homeomorphic either to $[0,1]^m \times (0,1)^n$ or $[0,1]^m \times [0,1)$, where m, n are cardinal numbers, $0 \le m \le \aleph_0$, $0 \le n < \aleph_0$. Hence it is natural to ask whether in an infinite-dimensional Hilbert space E, there exists a closed convex but not locally compact subset K, which is not contained in any proper closed linear subspace of E and every point of K is a boundary point. The answer is positive. Let $K = \{x \in l_2 | x = (x_1, x_2, \dots), x_i \ge 0 \text{ for all } i = 1, 2, \dots \}$. It is clear that K is closed convex and is not contained in any proper closed linear subspace of l_2 . Klee [10] proved that every point of K is a boundary point. It can be proved that every neighborhood of $(0,0,\cdots)$ in K is not compact. The topological classification of all closed convex subsets of an infinite-dimensional Hilbert space is far from complete.

The hypothesis of Theorem 4.3 lead us to consider the problem: When is an infinite-dimensional separable Banach space homeomorphic to l_2 ? Each of the following separable infinite-dimensional Banach spaces E is homeomorphic to l_2 .

- (a) E is a w^* -closed linear subspace of the dual space of a normed linear space.
- (b) E is (c_0) , the space of all sequences converging to 0 with supremum norm.
 - (c) E admits an unconditional basis.
- (d) E is a closed linear subspace of $L(X, \mu)$ of all real-valued μ -absolutely summable functions on a compact metric space X and μ is a Borel measure on X.
- 5. Periodic homeomorphisms with preassigned set of fixed points. This section is devoted to Problem II. The main results are Theorems 5.2, 5.3.

LEMMA 5.1. Let E be a normed linear space. For every positive integer n, there exists a homeomorphism of period 2n of E onto E with 0 as the only fixed point.

Proof. Let F be a two-dimensional closed linear subspace of E. Then there exist a closed linear subspace G of E and a homeomorphism h_1 of E onto $G \times F$ such that $h_1(0) = (0,0)$ and $h_1(x) = (0,x)$ for all x in F. For each positive integer n, there exists a homeomorphism of period n of the Euclidean plane R_2 onto itself with 0 as the only fixed point. Since F is topologically equivalent to R_2 , there exists a homeomorphism k of period n of F onto F with 0 as the only fixed point. Define

$$h_2: G \times F \rightarrow G \times F$$

by

$$h_2(x, y) = (-x, k(y))$$
 for (x, v) in $G \times F$.

Then h_2 is a homeomorphism of period 2n of $G \times F$ onto $G \times F$ with (0,0) as the only fixed point. Hence $h_1^{-1} \circ h_2 \circ h_1$ is a homeomorphism of period 2n of E onto E with 0 as the only fixed point. Q.E.D.

Theorem 5.2. Let F be an infinite-dimensional closed linear subspace of a Banach space E. If the characteristic cone of a closed convex body K of F is not a linear variety of finite deficiency in F then for each positive integer n, there exists a homeomorphism of period 2n of E onto E with Bd_FK as its set of fixed points. In case E is an infinite-dimensional Hilbert space, then for each integer n > 1, there exists a homeomorphism of period n of E onto E with K as its set of fixed points.

Proof. Let H be a closed hyperplane in E containing F (in case F=E, let H be the space E). Let H_F be a closed hyperplane in F. H_F is a closed linear subspace of H. Corollary 2.3 implies that there is a homeomorphism h_1 of E onto $(H/H_F) \times H_F \times (-\infty, \infty)$. By Theorems 2.5, 2.6, there is a homeomorphism h_2 of $H_F \times (-\infty, \infty)$ onto $H_F \times (-\infty, \infty)$ such that $h_2(K) = H_F \times [0, \infty)$, $h_2(Bd_F K) = H_F \times \{0\}$. Define h_3 of $(H/H_F) \times H_F \times (-\infty, \infty)$ onto itself by $h_3(x, y, t) = (r(x), y, -t)$ for all (x, y, t) in $(H/H_F) \times H_F \times (-\infty, \infty)$, where r is a homeomorphism of period 2n of H/H_F onto itself with 0 as the only fixed point. h_3 is a homeomorphism of period 2n of $(H/H_F) \times H_F \times (-\infty, \infty)$ onto itself with $\{0\} \times H_F \times \{0\}$ as its set of fixed points. Hence $h_1^{-1} \circ (1 \times h_2)^{-1} \circ h_3 \circ (1 \times h_2) \circ h_1$ is a homeomorphism of period 2n of E onto E with E as its set of fixed points.

Suppose E is an infinite-dimensional Hilbert space. Since F is an infinite-dimensional closed linear subspace of E, F is isomorphic to E. By a theorem of Klee [11, p. 33], for each integer n > 1, there exists a homeomorphism k_1 of period n of F onto F with $(F \sim \text{Int.} C_F) = \{x \in F | \|x\| \ge 1\}$ as its set of fixed points. On the other hand, there is a homeomorphism k_2 of F onto F such that $k_2(C_F) = F \sim \text{Int.} C_F$ [13]. By Theorems 2.5, 2.6, there is a homeomorphism k_3 of F onto F such that $k_3(K) = C_F$. Hence $k = k_3^{-1} \circ k_2^{-1} \circ k_3 \circ k_3$ is a homeomorphism of period n of F onto F with K as its set of fixed points. It is clear that K can be used to define a homeomorphism of period K of K onto K with K as its set of fixed points. Q.E.D.

THEOREM 5.3. Let F be a closed linear subspace of infinite deficiency in a Banach space E. If K is a closed subset in F then, for each positive integer n, there exists a homeomorphism of period 2n of E onto E with K as its set of fixed points. In case E is an infinite-dimensional Hilbert space, for each integer

n > 1, there exists a homeomorphism of period n of E onto E with K as its set of fixed points.

Proof. Let Q be an open half-space in E such that the bounding hyperplane H of Q contains F. By Theorem 3.5, there is a homeomorphism h_2 of Q onto $Q \cup K$ such that $h_2(x_0 + y) = y$ for all y in K where $x_0 \in Q$. Let h_1 be a homeomorphism of E onto Q such that $h_1(y) = x_0 + y$ for all y in H. Corollary 2.3 asserts that there is a homeomorphism h_3 of $Q \cup K$ onto $((H/F) \times \{0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$. Since H/F is an infinite-dimensional Banach space, by Lemma 3.2, there is a homeomorphism f of $(H/F) \times \{0, \infty)$ onto $((H/F) \times \{0\}) \times (0, \infty) \cup ((H/F) \times \{0\})$ such that f(x,0) = (x,0) for all $f(x) \in \{0\}$ befine

$$h_4$$
: $((H/F) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$

$$\rightarrow (((H/F) \sim \{0\}) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$$

by $h_4(x,t,y)=(j(x,t),y)$ for $x\in H/F$, $t\in [0,\infty)$, $y\in F$. It can be proved that h_4 is a homeomorphism of $((H/F)\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times K)$ onto $(((H/F)\sim\{0\})\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times K)$ such that $h_4(0,0,y)=(0,0,y)$ for all y in K. Define h_5 of $(((H/F)\sim\{0\})\times(0,\infty)\times F)\cup(\{0\}\times\{0\}\times K)$ onto itself by $h_5(x,t,y)=(r(x),t,y)$ where r is a homeomorphism of period 2n of H/F onto itself with 0 as the only fixed point obtained by Lemma 5.1. It is clear that h_5 is a homeomorphism of period 2n with $\{0\}\times\{0\}\times K$ as its fixed-point set. Then the mapping $h_1^{-1}\circ h_2^{-1}\circ h_3^{-1}\circ h_4^{-1}\circ h_5\circ h_4\circ h_3\circ h_2\circ h_1$ is a homeomorphism of period 2n of E onto E with E as its set of fixed points.

If E is an infinite-dimensional Hilbert space, then H/F is isomorphic to E. Hence for each integer n > 1, there exists a rotation r of angle $2\pi/n$ of H/F onto H/F with 0 as the only fixed point (see [1] or [11]). Define h'_5 of $(((H/F) \sim \{0\}) \times (0, \infty) \times F) \cup (\{0\} \times \{0\} \times K)$ onto itself by $h'_5(x,t,y) = (r(x),t,y)$. Then $h_1^{-1} \circ h_2^{-1} \circ h_3^{-1} \circ h_4^{-1} \circ h'_5 \circ h_4 \circ h_3 \circ h_2 \circ h_1$ is a homeomorphism of period n of E onto E with K as its fixed-point set. Q.E.D.

REMARK. In the case when E is an infinite-dimensional Hilbert space, Theorem 5.3 had been proved implicitly by Klee [14].

Corollary 2.3 is not available in the proof of Theorems 5.2, 5.3, when E is not complete [15]. But if there exists a continuous projection of E onto F, then $E = G \times F$ for some closed linear subspace G in E. Using the property that $E = G \times F$ in place of Corollary 2.3 we can prove the following results.

THEOREM 5.4. Let F be a closed linear subspace of finite deficiency in an infinite-dimensional normed linear space E. Let K be a closed convex body in F.

- (a) If the characteristic cone of K is not a linear variety then for each positive integer n, there exists a homeomorphism of period 2n of E onto E with $\mathrm{Bd}_F K$ as its fixed-point set.
- (b) If the characteristic cone of K is a linear variety L of infinite deficiency in F and if there exists a continuous projection of F onto L, then for each positive integer n, there exists a homeomorphism of period 2n of E onto E with $\mathrm{Bd}_F K$ as its set of fixed points.

THEOREM 5.5. Let F be a closed linear subspace of infinite deficiency in a normed linear space E such that there exists a continuous projection of E onto F. For every closed subset K of F and for each positive integer n, there exists a homeomorphism of period 2n of E onto E with K as its set of fixed points.

Theorem 5.3 leads us to consider the following problem: Given a compact subset K of an infinite-dimensional topological vector space E, does there exist a homeomorphism i of E onto E such that i(K) is contained in a closed linear subspace of infinite deficiency in E? Unfortunately, we only have the following partial result due to Klee [12]. For any given nonnegative integer n and compact subset K of an infinite-dimensional Banach space E, there exist closed linear subspaces L_1, L_2 of E, $E = L_1 \oplus L_2$, dim $L_2 = n$, and an isotopy f on E such that f_1 maps K linearly into L_1 and f_0 is the identity mapping on E. It can be proved that the result is true even when E is an infinite-dimensional complete metrizable locally convex topological vector space.

BIBLIOGRAPHY

- 1. S. Banach, Théories des opérations linéaires, Monografje Matematyczne, Warsaw, 1932.
- 2. R. G. Bartle and L. M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400-413.
- 3. C. Bessaga and A. Pelczyński, Some remarks on homeomorphisms of Banach spaces, Bull. Akad. Polon. Sci. 8 (1960), 757-761.
- 4. H. H. Corson and V. L. Klee, Topological classification of convex sets, Proc. Sympos. Pure Math. Vol. 7, pp. 37-51, Amer. Math. Soc., Providence, R. I., 1963.
 - 5. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
 - 6. N. Dunford and J. Schwartz, Linear operators, Vol. I, Interscience, New York, 1958.
 - 7. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527.
- 8. M. I. Kadeč, On homeomorphism of certain Banach spaces, Dokl. Akad. Nauk SSSR 92 (1953), 465-468.
- 9. _____, On weak and norm convergence, Dokl. Akad. Nauk SSSR 122 (1958), 13-16. 10. V. L. Klee, Jr., The supporting property of a convex set in a linear normed space, Duke Math. J. 15 (1948), 767-772.
- 11. _____, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10-43.
- 12. _____, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 13. _____, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674.

14, Fixed-point sets of periodic homeomorphisms of Hilbert space, Ann. of M	/lath.
(2) 64 (1956), 393-395.	
15, Mappings into normed linear spaces, Fund. Math. 49 (1960), 25-34.	
16, Topological equivalence of a Banach space with its unit cell, Bull. Amer. I	∕lath.
Soc. 67 (1961), 286-290.	
17. E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238.	
18, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382.	
19. P. A. Smith, Fixed point theorems for periodic transformations, Amer. J. Mat.	a. 63

(1941), 1-8.20. J. J. Stoker, Unbounded convex point sets, Amer. J. Math. 62 (1940), 165-179.

Northwestern University, Evanston, Illinois State University of Iowa, Iowa City, Iowa